Химический состав эмали – органические и неорганические компоненты
Эмаль представляет собой внешнюю защитную оболочку, покрывающую каждый зуб. Под ней скрывается дентин, а под ним – пульпарная камера с нервно-сосудистым пучком, пульпой. При этом эмалевый слой покрывает лишь коронку (видимую часть зуба), которая переходит в шейку, а та – в корень. Поверхность корневой системы покрыта цементом – это твердая смесь из волокон коллагена и кальция. Можно сказать, что это и есть зубодесневое соединение, ведь с его помощью корень надежно крепится к альвеоле.
Верхний слой зубов считается наиболее твердой тканью в человеческом организме, что обусловлено присутствием в ее составе минеральных компонентов зубной эмали. Туда входит преимущественно фосфат кальция в форме кристаллов гидроксиапатита – примерно 95-97%. Оставшаяся часть приходится на долю органических веществ, и это всего 1-2%. Остальное – вода, приблизительно 2-3%.
Химический состав эмали зуба
Наиболее прочными являются поверхностные слои, особенно на режущих краях и жевательных поверхностях резцов, клыков и моляров. Ближе к пришеечной области степень твердости ткани снижается. При этом и толщина этого слоя не распределена равномерно по всей коронке. Так, например, на жевательной поверхности она может составлять 1,5-1,6 мм, а вот по бокам и у самого основания эмаль будет значительно тоньше.
Эмаль зуба: состав
Эмаль зуба состоит из: 96% неорганических минералов, 1% органической матрицы и 3% воды. Благодаря такому составу, на гистологических срезах эмаль выглядит оптически однородной.
С возрастом количество органической матрицы и воды убывает, а содержание неорганических минералов, соответственно, повышается. Следует отметить, что в отличие от дентина и цемента, органическая порция эмали не содержит коллаген. Вместо этого в эмали имеются два уникальных класса протеинов под названием “амелогенины” и “энамелины”. Прямое назначение этих протеинов в настоящее время недостаточно изучена, однако есть предположения, что они играют незаменимую роль в механизме развития эмали.
Что касается неорганической субстанции эмали, то она 90-95% состоит из гидроксиапатита.
Основные функции
Главной функциональной задачей этой части зуба является надежная защита его внутренних структур – дентина и пульпы. Она является барьером, предупреждающим раздражающее механические, термическое и химическое воздействие на более чувствительные и восприимчивые ткани. Именно благодаря ее твердости мы имеем возможность свободно и безболезненно откусывать и пережевывать пищу.
Если говорить в общем, то зубы также помогают нам воспроизводить звуки и, соответственно, разговаривать. Еще они отвечают за привлекательность нашей улыбки и внешнего вида в целом, что обеспечивает наш комфорт как в психологическом, так и в социальном плане.
Эмаль помогает откусывать и пережевывать пищу
Эмали для наружних работ
Лидером по долговечности и прочности, пожалуй, являются кремнийорганические эмали. Марки эмалей КО-42, КО-855, КО-174 выпускаются самых разнообразных оттенков и обеспечивают хорошую защиту от внешних воздействий.
Алкидная эмаль (марки ПФ и ГФ) применяется для окрашивания деревянных и металлических поверхностей. Она обеспечивает твердую прочную блестящую пленку после высыхания. Большинство алкидных эмалей имеют время высыхания 24 часа, но выпускаются и быстросохнущие краски, которые высыхают за 1 час.
Очень прочное и долговечное полуматовое покрытие обеспечивает эмаль ХВ, которая в своей основе содержит перхлорвиниловую и глифталевую смолы. Для окраски оштукатуренной бетонной либо кирпичной поверхности фасада здания рекомендуется использовать эмаль ХВ-161. Эта краска отличается высокой устойчивостью к воздействию атмосферных осадков.
Эмаль ХВ-0278 применяется для окраски подготовленных металлических и деревянных поверхностей для наружных работ. На поверхность наносится методом безвоздушного или пневматического распыления.
Для этих же целей, а также для окраски бетонных и железобетонных строительных конструкций применяется эмаль ХВ-16. Кроме того, эта эмаль может использоваться для декорирования тканей. Нанесение эмали такого типа производится методом распыления.
Благодаря своей уникальной стойкости, эмаль ХВ-785 применяется в комплексном покрытии для защиты оборудования, металлических изделий и железобетонных строительных конструкций от агрессивного воздействия концентрированных неорганических кислот, щелочей, солей и газов, а также от длительного контакта с водой при температурах не выше 60-65 оС. Наносят также методом распыления. Кроме того, для этих же целей используется полиуретановая эмаль. Эмаль по металлу наносят на оцинкованное железо, алюминий и черные металлы.
Эмаль НЦ-132 очень быстро сохнет, прекрасно защищает от разрушающего воздействия сырости и прямых солнечных лучей. Основой эмали НЦ-132 является нитроцеллюлоза. Она применяется для покраски деревянных и заранее прогрунтованных металлических изделий, также для любых наружных работ. НЦ эмаль наносится на поверхность технологией распыления. Перед началом работы поверхность рекомендуется хорошо очистить от грязи, пыли, жира, технических смазок. Металлические изделия очистить от ржавчины и обязательно загрунтовать.
Анатомо-гистологическое строение эмалевого слоя
Структура эмали зубов включает в себя несколько компонентов. Среди них можно выделить две основные структурные единицы – эмалевые призмы и межпризменную субстанцию. Рассмотрим их чуть подробнее.
Состав эмалевых призм
Гистологическое строение эмали зуба предусматривает наличие призм, которые состоят из особых эмалеобразующих клеток, называемых амелобластами. А главной отличительной особенностью этих призм является тот факт, что они непрерывно пересекают поверхность эмали по всей ее толщине и находятся в положении, перпендикулярном соединению эмали и дентина.
Межпризменная ткань
Часть гистологии, изучающая строение зубов, также выделяет межпризменную ткань. Главным отличием этой составляющей от призмы является направление ее кристаллов. Эмалевые пучки и пластины проходят через толщину покрытия и представляют собой гипоминерализованные зоны. Пластинки, называемые лапеллами, – это своеобразные дефекты, которые состоят в основном из органических соединений. Те же, в свою очередь, могут способствовать проникновению бактерий внутрь защитного слоя зубов и тем самым помогать развитию кариозных процессов1.
На фото показана схема строения эмали зубов
Нужно также заметить, что в межпризменном пространстве присутствуют еще и отростки одонтобластов. Именно они во много определяют чувствительность эмали. Суть в том, что тела одонтобластов находятся в пульпе, где концентрируются нервные окончания. При этом отростки этих клеток располагаются непосредственно в эмали.
Специфика эмали молочных зубов
Главная особенность эмали первых зубных единиц заключается в том, что этот слой не такой прочный, как у постоянных зубов. Обосновать это можно тем фактом, что в молочных зубах сконцентрировано гораздо меньше минеральных соединений. Если детально изучить состав детской эмали, и рассмотреть ее под микроскопом, можно сделать такие выводы:
- Линии Ретциуса, о которых мы упомянули выше, выражены не так ярко, как на постоянных единицах.
- Призмы размещены в горизонтальном направлении.
- В эмали молочного зуба много микроскопических трещин, отсюда и пористость ее структуры.
Учитывая данные сведения, детские стоматологи утверждают, что детская эмаль больше подвергается износу и разрушению. По этой причине и кариес прогрессирует у детей интенсивными темпами.
Восприимчивость эмали к кариозным процессам
Несмотря на свою твердость, защитный слой наших зубов все же остается достаточно восприимчивым к некоторым патологическим процессам, в частности, к развитию кариеса. Эта болезнь является следствием активного размножения и распространения бактерий, продукты жизнедеятельности которых оказывают разрушительное влияние на твердые ткани.
Восприимчивость к таким процессам может быть обусловлена разными факторами. Среди них эксперты в области стоматологии выделяют недоразвитость эмалевого покрытия, что является аномалией в формировании зубочелюстной системы. Кариес также часто становится следствием неправильного питания, чрезмерного употребления продуктов, богатых простыми углеводами и сахарами, недостатка витаминов и полезных микроэлементов в рационе.
Среди возможных предпосылок развития кариозных процессов также можно выделить недостаточную гигиену, образование обильного налета и отложений, внутренние системные патологии, приводящие к изменению состава слюны и ph-баланса в полости рта.
Биохимия полости рта
Биохимия твердых тканей зуба
К таким тканям относятся эмаль, дентин, цемент зуба. Эти ткани отличаются друг от друга различным происхождением в онтогенезе. Поэтому отличаются по химическому строению и составу. А также по характеру метаболизма. В них эмаль – эптодермального происхождения, а кость, цемент, дентин – мезентимального происхождения, но , несмотря на это, все эти ткани имеют много общего, состоят из межклеточного вещества или матрицы, имеющего углеводно-белковую природу и большое количество минеральных веществ, в основном, представленных кристаллами апатитов.
Степень минерализации:
Эмаль –> дентин –> цемент –> кость.
В этих тканях следующее процентное содержание:
Минеральные вещества: Эмаль-95%; Дентин-70%; Цемент-50%; Кость-45%
Органические вещества: Эмаль-1 – 1,5%; Дентин-20%; Цемент-27%; Кость-30%
Вода: Эмаль-30%; Дентин-4%; Цемент-13%; Кость-25%.
Эти кристаллы имеют гексогенальную форму.
Минеральные компоненты эмали
Они представлены в виде соединений, имеющих кристаллическую решетку
A (BO ) K
A = Ca, Ba, кадмий, стронций
В = РО , Si, As, CO .
K = OH, Br, J, Cl.
1) гидроксиапатит – Са (РО ) (ОН) в эмали зуба 75% ГАП – самый распространенный в минерализованных тканях
2) карбонатный апатит – КАП – 19% Са (РО ) СО – мягкий, легко растворимый в слабых кислотах, целочах, легко разрушается
3) хлорапатит Са (РО ) Сl 4,4% мягкий
4) стронцевый апатит (САП) Са Sr (PO ) — 0,9% не распространен в минеральных тканях и распространен в неживой природе.
Мин. в-ва 1 – 2% в неапатитной форме, в виде фосфорнокислого Са, дикальциферата, ортокальцифосфата. Соотношение Са / Р – 1,67 соответствует идеальному соотношению, но ионы Са могут замещаться на близкие по свойству химические элементы Ва, Сr, Mg. При этом снижается соотношение Са к Р, оно уменьшается до 1,33%, изменяются свойства этого апатита, уменьшается резистентность эмали к неблагоприятным условиям. В результате замещения гидроксильных групп на фтор, образуется фторапатит, который превосходит и по прочности и по кислотоустойчивости ГАП.
Са (РО ) (ОН) + F = Ca (PO ) FOH гидроксифторапатит
Са (РО ) (ОН) + 2F = Ca (PO ) F фторапатит
Са (РО ) (ОН) + 20F = 10CaF + 6PO + 2OH фторид Са.
СаF — он прочный, твердый, легко выщелачивается. Если рн сдвигается в щелочную сторону, происходит разрушение эмали зуба, крапчатость эмали, флюороз.
Стронцевый апатит – в костях и зубах животных и людей, живущих в регионах с повышенным содержанием радиоактивного стронция, они обладают повышенной хрупкостью. Кости и зубы становятся ломкими, развивается стронцевый рахит, беспричинный, множественный перелом костей. В отличие от обычного рахита, стронцевый не лечится витамином Д.
Особенности строения кристалла
Наиболее типичной является гексогенальная форма ГАП, но может быть кристаллы с палочковидной, игольчатой, ромбовидной. Все они упорядочены, определенной формы, имеют упорядоченные эмаль призмы – является структурной единицей эмали.
4 структуры:
кристалл состоит из элементарных единиц или ячеек, таких ячеек может быть до 2 тысяч. Мол.масса = 1000. Ячейка – это структура 1 порядка, сам кристалл имеет Mr = 2 000 000, он имеет 2 000 ячеек. Кристалл – структура 2 порядка.
Эмалевые призмы являются структурой 3 порядка. В свою очередь, эмалевые призмы собраны в пучки, это структура 4 порядка, вокруг каждого кристалла находится гидратная оболочка, любое приникновение веществ на поверхность или внутрь кристалла связано в этой гидратной оболочкой.
Она представляет собой слой воды, связанной с кристаллом, в котором происходит ионный обмен, он обеспечивает постоянство состава эмали, называется эмалевой лимфой.
Вода внутрикристаллическая, от нее зависят физиологические свойства эмали и некоторые химические свойства, растворимость, проницаемость.
Вид: вода, связанная с белками эмали. В структуре ГАП соотношение Са / Р – 1,67. Но встречаются ГАП, в которых это соотношение колеблется от 1,33 до 2.
Ионы Са в ГАПе могут быть замещены на близкие по свойствам в Са другие хим.эл-ты. Это Ba, Mg, Sr, реже Na,K, Mg, Zn, ион H O. Такие замещения называются изоморфными, в результате соотношение Са / Р падает. Таким образом, образуется из ГАП – ГФА.
Фосфаты могут заместиться на ион РО НРО цитрат.
Гидрокситы замещаются на Cl, Br, F , J .
Такие изоморфные замещения приводят к тому, что изменяется и свойство апатитов – резистентность эмали к кислотам и к кариесу падает.
Существуют другие причины изменения состава ГАП, наличие вакантных мест в кристаллической решетке, которые должны быть замещены с одним из ионов, возникают вакантные места чаще всего при действии кислот, уже в сформированном кристалле ГАП, образование вакантных мест приводит к изменению св-в эмали, проницаемости, растворимости, адсорб.св-ва.
Нарушается равновесие между процессом де- и реминерализации. Возникают оптимальные условия для хим. реакций на поверхности эмали.
Физико-химические свойства кристалла апатита
Одним из важнейших свойств кристалла является заряд. Если в кристалле ГАП 10 ост.Са, тогда считают 2 х 10 = 3 х 6 + 1 х 2 = 20 + 20 = 0.
ГАП электонейтрален, если в структуре ГАП содержится 8 ионов Са – Са (РО ) , то 2 х 8 20 = 16 < 20, кристалл приобретает отриц.заряд. Он может и положительно заряжаться. Такие кристаллы становятся неустойчивыми. Они обладают реакционной способностью, возникает поверхностная электрохимическая неуравновешенность. ионы находятся в гидратной оболочке. Могут нейтрализовать заряд на поверхности апатита и такой кристалл снова приобретает устойчивость.
Стадии проникновения веществ в кристалл ГАП
3 стадии
1) ионный обмен между раствором, который омывает кристалл – это слюна и зубдесневая жидкость с его гидратной оболочкой. В нее поступают ионы, нейтрализующие заряд кристалла Са, Sr, Co, PО, цитрат. Одни ионы могут накапливаться и также легко покидать, не проникая внутрь кристалла – это ионы К и Cl, другие ионы проникают в поверхностный слой кристалла – это ионы Na и F. Стадия происходит быстро в течение нескольких минут.
2) это ионный обмен между гидратной оболочкой и поверхностью кристалла, происходит отрыв иона от поверхности кристалла и замена их на другие ионы из гидратной оболочки. В результате уменьшается или нейтралезуется поверхностный заряд кристалла и он приобретает устойчивость. Более длительная, чем 1 стадия. В течение нескольких часов. Проникают Ca, F, Co ,Sr, Na, P.
3) Проникновение ионов с поверхности внутрь кристалла – называется внутрикристаллический обмен, происходит очень медленно и по мере проникновения иона скорость этой стадии замедляется. Такой способностью обладают ионы Ра, F, Са, Sr.
Наличие вакантных мест в кристаллической решетке является важным фактором в активации изоморфных замещений внутри кристалла. Проникновение ионов в кристалл зависит от R иона и уровня Е, которой он обладает, поэтому легче проникают ионы Н , и близкие по строению к иону Н . Стадия протекает дни, недели, месяцы. Состав кристалла ГАП и свойства их постоянно изменяются и зависят от ионного состава жидкости, которая омывает кристалл и состава гидратной оболочки. Эти св-ва кристаллов позволяют целенаправленно изменять состав твердых тканей зуба, под действием реминерализующих растворов с целью профилактики или лечения кариеса.
Органические вещества эмали
Доля орг.в-в 1 – 1,5%. В незрелой эмали до 20%. Орг.в-ва эмали влияют на биохимические и физические процессы, происходящие в эмали зуба. Орг.в-ва нах-ся между кристаллами апатита в виде пучков, пластинок или спирали. Осн.представители – белки, углеводы, липиды, азотсодержащие в-ва (мочевина, пептиды, цикл.АМФ, цикл.аминокислоты).
Белки и углеводы входят в состав органич.матрицы. Все процессы реминерализации происходят на основе белковой матрицы. Большая часть представлена коллагеновыми белками. Они обладают способностью инициировать реминерализацию.
1. а) белки эмали – нерастворимы в кислотах, 0,9% ЭДТА. Они относятся к коллаген- и керамидо- подобным белкам с большим количеством сер, оксипролина, гли, лиз. Эти белки играют защитную ф-цию в процессе деминерализации. Не случайно в очаге деминерализации на ст.белого или пигментированного пятна кол-во этих белков > в 4 раза. Поэтому кариозное пятно в течение нескольних лет не превращается в кариозную полость, а иногда вообще не развивается кариес. У пожилых людей к кариесу > резистентность. б) кальцийсвязывающие белки эмали. КСБЭ. Содержат ионы Са в нейтральной и слабощелочной среде и способствуют проникновению Са из слюны в зуб и обратно. На долю белков А и Б приходится 0,9% от общей массы эмали.
2. Б.растворимые в воде не связанные с минеральными в-вами. Они не обладают сродством к минер.компонентам эмали, не могут образовывать комплексы. Таких белков 0,3%.
3. Своб.пептиды и отд.аминокислоты, такие как промин, гли, вал, оксипролин, сер. До 0,1%
1) ф-я защитная. Белки окружают кристалл. Предупреждают процесс деминерализации
2) белки инициируют минерализацию. Активно участвуют в этом процессе
3) обеспечивают минер.обмен в эмали и др.твердых тканях зуба.
Углеводы представлены полисахаридами: глюкоза, галактоза, фруктоза, гликоген. Дисахариды нах-ся в свободной форме, а образуются белковые комплексы – фосфо-гликопротеиды.
Липидов очень мало. Представлены в виде гликофосфолипидов. При образовании матрицы они выполняют роль связующих мостиков между белками и минералами.
Дентин уступает по твердости. Наиболее важными элементами дентина являются ионы Са, РО , Со , Мg , F. Mg сод-ся в 3 раза больше, чем в эмали. Концентрация Na и Cl возрастает во внутренних слоях дентина.
Основное в-во дентина состоит из ГАП. Но в отличие от эмали, дентин пронизан большим количеством дентинных канальцев. Болевые ощущения передаются по нервным рецепторам. В дентинных канальцах нах-ся отростки клеток одонтобластов, пульпа и дентинная жидкость. Дентин составляет основную массу зуба, но явл.менее минерализов.в-вом, чем эмаль, по строению напоминает грубоволокнистую кость, но более твердый.
Органические вещества
Белки, липиды, углеводы, …
Белковый матрикс дентина — 20% от общей массы дентина. Состоит из коллагена, на его долю приходится 35% всех органических в-в дентина. Это свойство характерно для тканей лизин нормального происхождения, содержит глюкозаминогликогены, галактозу, гексазамиты и гелиуроновые кислоты. Дентин богат активными регуляторными белками, которые регулируют процесс реминерализации. К таким спец.белкам отн-ся амелогенины, энамелины, фосфопротеиды. Для дентина, как и для эмали, характерен замедленный обмен мин.компонентов, что имеет большое значение для сохранения стабильности тканей в условиях повышенного риска деминерализации, стресса.
Цемент зуба
Покрывает тонким слоем весь зуб. Первичный цемент образован минеральным в-вом, в котором в разных направлениях проходят коллагеновые волокна, клеточные элементы – цементобласты. Цемент зрелого зуба мало обновляется. Состав: минер.компоненты в основном представлены карбонатами и фосфатами Са. Цемент не имеет как эмаль и дентин, собственных кровеносных сосудов. В верхушке зуба – клеточный цемент, основная часть – бесклеточный цемент. Клеточный напоминает кость, а бесклеточный состоит из колл.волокон и аморфного в-ва, склеивающего эти волокна.
Пульпа зуба
Это рыхлая соединит.ткань зуба, заполняющая коронковую полость и корневой канал зуба с большим количеством нервов и кровеносных сосудов, в пульпе есть коллагеновые, но нет эластических волокон, есть клеточные элементы, представленные одонтобластами, макрофагами и фибробластами. Пульпа является биологическим барьером защищающим зуб.полость и периодонт от инфекции, выполняет пластическую и трофическую функцию. Характеризуется повыш-ой активностью окислительно-восстановит.процессов, а поэтому высоким потреблением О . Регуляция энергетического баланса пульпы осуществяется путем сопряжения окисления с фосфорилированием. О высоком уровне биологич.процессов в пульпе говорят наличие таких процессов, как ПФП, синтез РНК, белков, поэтому пульпа богата ферментами, осуществляющими эти процессы, но особенно свойственен для пульпы углеводный обмен. Есть ферменты гликолиза, ЦТК, водно-минерального обмена (щелочн.и кислая фосфотозы), трансаминазы, аминопептидазы.
В результате этих процессов обмена обр-ся множество промежуточных продуктов, которые поступают из пульпы в твердые ткани зуба. Все это обеспечивает высокий уровень …., реакт-и и защитн.мех-ов.
При патологии активность этих ферментов повышается. При кариесе происходят деструктивные изменения в одонтобластах, разрушение коллагеновых волоккон, появл-ся кровоизлияния, изменяется активность ферментов, обмен в-в в пульпе.
Пути поступления в-в в твердые ткани зуба и проницаемость эмали
Зуб имеет контакт со смешанной слюной, с другой стороны – …. крови, от их сост-я зависит сост-е твердых тканей зуба. Осн.часть органич.и минер.в-в, которые поступают в эмаль зуба, содержатся в слюне. Слюна действует на эмаль зуба и вызывает набухание или сморщивание коллагеновых барьеров. В результате происходит изменение проницаемости эмали. Вещества слюны обмен-ся с веществами эмали и на этом основаны процессы де- и реминерализации. Эмаль – это полупроницаемая мембрана. Она легко проницаема для Н О, ионов (фосфаты, бикарбонаты, хлориды, фториды, катионы Са, Mg, K, Na, F, Ag и др.). они и определяют нормальный состав эмали зуба. Проницаемость зависит и от других факторов: от хим.стр-ры в-ва и св-в иона. Размеры апатитов от 0,13 — 0,20 нм, расстояние между ними 0,25 нм. Любые ионы должны проникать через эмаль, но определить проницаемость с т.зр. Мr или размеров ионов нельзя, имеют место другие св-ва сродство иона к гидроксиапатиту эмали.
Основной путь поступления в-в в эмаль – простая и облегченная диффузия.
Проницаемость эмали зависит от:
1) размеров микропространств, заполн. Н О в структуре эмали
2) размера иона или размера молекулы в-ва
3) способности этих ионов или молекул связываться с компонентами эмали.
Н-р, ион F (0,13 нм) легко проникает в эмаль и связывается с элементами эмали в нарушенном слое эмали, поэтому не проникает в глубокие слои. Са (0,18 нм) – адсорбируется на поверхности кристаллов эмали, а также легко входит в кристаллич.решетку, поэтому Са откладывается как в поверхностном слое, так и диффунгицирует внутри. J легко проникают в микропространство эмали, но не способны связываться с кристаллами ГАП, поступают в дентин, пульпу, затем в кровь и депонируются в щитовидной железе и надпочечниках.
Проницаемость эмали снижается под действием химич. Факторов: KCl, KNO , фтористых соединений. F взаимодействует с кристаллами ГАП, создает барьер для глубокого проникновения многих ионов и в-в. Св-ва прон-и зависят от состава смешанной слюны. Так, инта..ая слюна по-разному действует на проницаемость эмали. Это связывают с действием ферментов, которые есть в слюне. Н-р, гиалуронидоза > проницаемость Са и глицина, особенно в области кариезного пятна. Хемотрипсин и целочная фосфатоза < проницаемость для CaF и лизина. Кислая фосфатоза > проницаемость для всех ионов и в-в.
Доказано, что в эмаль зуба проникают амино-кислоты (лизин, глицин), глюкоза, фруктоза, галактоза, мочевина, никотинамид, вит, гормоны.
Проницаемость зависит от возраста человека: самая большая – после прорезывания зуба, она снижается к моменту созревания тканей зуба и продолжает снижаться с возрастом. От 25 до 28 лет > резистентность к кариесу, происходит сложный обмен при сохранении постоянства состава эмали.
РН слюны, а также снижение рн под зубным налетом, где образуются органические кислоты, проницаемость увеличивается вследствие активации деминерализации эмали кислотами.
Кариес > проницаемость. На стадии белого и пигментированного пятна > проницаемость, > возможность проникновения различных ионов и в-в, а также Са и фосфатов – это компенсаторные реакции в ответ на актив-ю деминерализации. Не каждое кариозное пятно превращается в кариозную полость, кариес разв-ся в течение очень длительного времени.
Гипосаливация приводит к разрушению эмали. Кариес, который возникает ночью – это ночная болезнь.
Поверхностные образования на зубах
Это муцин, кутикула, пеликула, зубной налет, камень.
Муцин – сложный белок, отн-ся к гликопротеидам слюны, который покрывает поверхность зуба и выполняет защ.ф-ю, защищает от механических и химических воздействий, его защитная роль объясняется особенностями, спецификой аминокислотного состава и особенностями содерж-ся сер, трианин, в которых содержатся до 200 аминокислот, про… К остаткам сер и трианина присоединяется за счет О-гликозидной связи. Остатки N-ацетилнейраминов. к-ты, N-ацетилглюкозамина, галактозы и ф..зы. Белок напоминает по строению гребенку, у которой имеется … белков, остатки состоящих из аминокислот, а углеводные компоненты расположены белковыми цепями, они соединяются друг с другом дисульфидными мостиками и обр-ся крупные молекулы, способные удерживать Н О. Они образуют гель.
Пелликула
Это тонкая, прозрачная пленка, углеводно-белковой природы. Влюч.глицин,гликопротеиды, отд.аминок-ты (ала, глу), Jg, A, G, M, аминосахара, которые обр-ся в результате жизнедеятельности бактерий. В строении обнаруживается 3 слоя: 2 на поверхности эмали, а третий – в поверхностном слое эмали. Пелликула покрывает зубной налет.
Зубной налет
Белая мягкая пленка, наход-ся в области шейки и на всей поверхности. Удаляется во время чистки и жесткой пищей. Это кариесогенный фактор. Представляет деструктивное орган.в-во с большим кол-вом ../о, которые нах-ся в полости рта, а также продуктов их жизнедеятельности. В 1 г зубного налета сод-ся 500 х 10 микроб.клеток (стрептококки). Различают ранний зубной налет (в течение первых суток), зрелый зубной налет (от 3 до 7 суток).
3 гипотезы образования зубного налета
1) …
2) преципитация гликопротеидов слюны, которые реагируют в бактериях
3) приципитация внутриклеточных полисахаридов. Образуются стрептококками, наз-ся декстран и леван. Если центрифугировать зубной налет и пропустить его через фильтр, то выделяется 2 фракции, клеточная и бесклеточная. Клеточная – эпителиальные клетки, стрептококки, (15%). ….ты, дифтероиды, стафиллококки, дрожжеподобные грибы – 75%.
В зубном налете 20% — сухого в-ва, 80% — Н О. В сухом в-ве есть минер.в-ва, белки, улеводы, липиды. Из минер.в-в: Са – 5 мкгр/в 1 г сухого в-ва зубного налета. Р – 8,3, Na – 1,3, К – 4,2. Есть микроэлементы Са, Str, Fe, Mg, F, Se. F сод.в зубном налете в трех формах:
1) CaF — фторид Ca
1) комплекс белка CF
2) F в строении М/О
Одни микроэлементы снижают восприимчивость зубов к кариесу F, Mg, другие снижают устойчивость к кариесу – Se, Si. Белки из сухого налета – 80%. Белковый и аминокислотный состав неидентичен таковым смешан.слюны. По мере созревания аминокислот они изменяются. Исчезает гли, арг, лиз, > глутомата. Углеводов 14% — фруктоза, глюкоза, гексозамины, с..аловые кислоты и кисл., и глюкозаминами.
При участии ферментов бактерий зубного налета, из глюкозы синтезируются полимеры – декстран, из фруктозы — леван. Они и составляют основу органич.матрицы зубного налета. Участвующие в пре…ции микроорганизмы расщепляющся соответственно декстр..зной и леванозной кариесогенных бактерий стрептококков. Обр-ся огран.к-ты: мактак, пируват, уксусная, пропионовая, лимонная. Это приводит к снижению под зубным налетом на поверхности эмали рн до 4,0. Это кариесогенные условия. Поэтому зубной налет является одним из важных этиологич.и патогенных звеньев в развитиии кариеса и болезней пародонта.
Липиды
В раннем зубном налете – триглицериды, кс, глицерофосфолипиды. В зрелом кол-во < , образуются комплексы с углеводами – глицерофосфолипиды.
Много гидролитических и протеалитических ферментов. Они действуют на органический матрикс эмали, разрушая его. Отн.гликозидозы. их активность в 10 раз выше, чем в слюне. Кислая, щелочная фосфотазы, РН, ДН –нозы. Пероксидазы.
Метаболизм зубного налета зависит от характера микрофлоры. Если в ней преобладают стрептококки, то рн<, но рн зубного налета может и повышаться за счет преобладания акти….тов и стафиллококков, которые обладают уреалитической активностью, расщепляют мочевину, NН , дезаминируют аминокислоты. Образовавшийся NH соединяется с фосф-и и карбонатами Са и Мg и образуется сначала аморфный карбонат и фосфат Са и Мg, некристаллический ГАП — — -> кристаллический.
Зубной налет минерализуясь, превращается в зубной камень. Особенно с возрастом, при некоторых видах патологии у детей – отложения зубного камня связано с врожденными поражениями сердца, С.Д.
Зубной камень (ЗК)
Это патологич.обезвествленное обр-е на поверхности зубов. Различают наддесневой, поддесневой з.к. Отличаются по локализации, химическому составу и по химизму образования.
Хим.состав з.к.
Мин.в-ва 70 – 90% сух.в-ва.
Количество минеральных в-в в з.к. различно. Темный з.к. содержит больше минеральных в-в, чем светлый. Чем > минерализован зк, мем > Mg, Si, Str, Al, Pb. Сначала обр-ся маломинерализованные в-ва зк, которые на 50% состоят из в-ва бруслит Са НРО х 2Н О.
Октокальцийфосфат Са Н (РО ) х 5Н О
Карбонатные апатиты Са (РО СО)
Са (РО ) СО (ОН ) .
Гидроксиапатит Са (РО ) (ОН
Виктолит – (Са Мg) (РО )
Есть в зк –F содержится в тех же з-х формах, что и в зубном налете.
Белки в зависимости от зрелости зк – от 0,1 – 2,5%. Кол-во белков < по мере минерализации зк. В наддесневом зк сод-ся 2,5%. В темн.наддесневом зк – 0,5%, в поддесневом – 0,1%
Зн-ие Б. В зк – это белки кальцийпреципитирующее глико-и фосфопротеиды. Углеводная часть которых представлена галактозой, фруктозой, ма…зой. В соотношении 6 : 3 : 1.
Особенность аминокислотного состава — нет циклических аминокислот
Липиды ГФЛ – синтезируются микроорганизмами зубного налета. Способны связывать Са с белками а инициировать образование ГАП. Есть в зк АТФ, она является одновременно источником энергии, а также донором фосфороорганич.в-в. при минерализации брулита и преврашении его в ТАП. Брулит превращается в октокальцийфосфат —> ГАП (при рн>8). Брулит — АТФ —> октокальцийфосфат —> ГАП.
Биохимические изменения в твердых тканях зуба при кариесе, профилактика кариеса методом реминерализации
Начальные биохимич.изменения возникают на границе между поверхностью эмали и основание зубного камня. Первич.клиническим проявлением явл.появление кариозного пятна (белого или пигментированного). В этом участке эмали сначала проходят процессы деминерализации, особенно выраженные в подповерхност.слое эмали, а затем происходят изменения в органическом матриксе, что приводит к > проницаемости эмали. Деминерализация происходит только в области кариозного пятна и она связана с увеличением микропространства между кристаллами ГАП, > растворимость эмали в кислой среде, возможны 2 типа реакций в зависимости от кислотности:
Ca (PO ) (OH) + 8H = 10Ca + 6 HPO + 2 H O
Ca (PO ) (OH) + 2H = Ca(H O) (PO ) (OH) + CA
Реакция № 2 приводит к образованию апатита в строении которого имеется вместо 10, 9 атомов Са, т.е. < отношение Са/Р, что приводит к разрушению кристаллов ГАП, т.е. к деминерализации. Можно стимулировать реакцию по первому типу и тормозить деминерализацию. 2 эт.развития кариеса – появление кар.бляшки. Это гелеподобное в-во углеводно-белковой природы, в нем скапливаются микроорганизмы, углеводы, ферменты и токсины. Бляшка пористая, через нее легко проникают углеводы. 3 эт. – образование органических кислот из углеводов за счет действия ферментов кариесогенных бактерий. Сдвиг рн в кисл.сторону., происходит разрушение эмали, дентина, образование кариозной полости.
Профилактика и лечение кариеса реминерализующими средствами
Реминерализация – это частичное изменение или полное восстановление минер.компонентов эмали зуба за счет компонентов слюны или реминерализующих растворов. Реминерализация основана на адсорбции минер.в-в в кариозные участки. Критерием эффективности реминерализующих растворов явл-ся такие св-ва эмали, как проницаемость и ее растворимость, исчезновение или уменьшение кариозного пятна, < прироста кариеса. Эти функции выполняет слюна. Используются реминерализующие растворы, содержащие Са, Р, в тех же соотношениях и количествах, что и в слюне, все необходимые микроэлементы.
Реминерализующие растворы обладают большим эффектом действия, чем смешанная слюна.
В составе слюны Са и Р соединается с органич.комплексами слюны и содержание этих комплексов уменьшается в слюне. Эти р-ры должны содержать F в необходимом количестве, так как он влияет на омоложение Са и Р в твердые ткани зуба и кости. При < концентрации происходит преципитация ГАП из слюны, в отсутствии F преципитация ГАП не происходит, и вместо ГАП образуется октокальцийфосфат. Когда F очень много обр-ся вместо ГАП несвойственные этим тканям минеральные в-ва и чаще CaF .
Гипотеза патогенеза кариеса
Существуют несколько гипотез:
1) нервно-трофический кариес рассматривается как результат условий существования человека и воздействия на него факторов внешней среды. Большое значение авторы придавали ЦНС
2) трофическая. Механизм развития кариеса заключается в нарушении трофической роли одонтобластов
3) пелационная теория. Кариес есть результат пелации эмали комплексами смешанной слюны. Кариес – результат одновременного протеолиза орган.в-в и пелации минер в-в эмали
4) ацидогенная или химико-кариозитозная. В основе лежит действие кислореагирующих в-в на эмаль зуба и участие тикроорганизмов в кариозном процессе. Предложена 80 лет назад и лежит в основе современной гипотезы патогенеза кариеса. Кариесобезвествленных тканей, вызыв-ся кислотами, образ. в результате действия микроорганизмов на углеводы.
Кариесогенные факторы делятся на факторы общего и местного характера.
Общего характера:
относятся неполноценное питание: избыток углеводов, недостаток Са и Р, дефицит микроэлементов, витаминов, белков и др.
Болезни и сдвиги в функцион.состоянии органов и тканей. Неблагоприятное воздействие в период прорезывания зубов и созревания и в первый год после прорезывания.
Электром.возд-ие (ионизирующая радиация, стрессы), которые действуют на слюнные железы, выделяемая слюна не соответствует нормальному составу, а она действует на зубы.
Местные факторы:
1) зубной налет и бактерии
2) изменение состава и св-в смешанной слюны (сдвиг рн в кислую сторону, недостаток F, уменьшается количество и соотношение Са и Р и др.)
3) углеводная диета, углеводные пищевые остатки.
Противокариесогенные факторы и кариесрезистентность зубов
1) восприимчивость к кариесу зависит от типа минерализации твердых тканей зуба. Желтая эмаль более кариесоустойчивая. С возрастом происходит уплотнение кристаллической решетки и кариесорезистентность зубов увелич.
2) Кариесорезистентности способствует замещение ГАП на фторапатиты – более прочные, более кислотоустойчивые и плохорастворимые. F – это противокариесогенный фактор
3) Кариесрезистентность поверхностного слоя эмали объясняется повышенным содержанием в ней микроэлементов: станум, Zn, Fe, Va, вольфрам и др., а Se, Si, Cd, Mg – явл-ся кариесогенными
4) Кариесорезистентности зубов способствует вит. D , C, A, B и др.
5) Противокариесогенными св-вами обладают смешанная слюна, т.е. ее состав и свойства.
6) Особое значение придается лимонной кислоте, цитрату.
F и стронций
F содержится во всех тканях организма. Находятся в нескольких формах:
1) кристалл. форма фторапатита: зубы, кости
2) в комплексе с органич. в-вами гликопротеидами. Образ-ся органический матрикс эмали, дентина, костей
3) 2/3 общего количества F нах-ся в ионном состоянии в биол.
жидкостях: кровь, слюна. Сниж.F в эмали и дентине связано с изменением в пит.Н О.
Легче F включ.в структуру эмали в слабокислой среде, кол-во F в костях увеличивается с возрастом, а в зубах детей обнаруживается в повышенных количествах, в период созревания твердых тканей зуба и сразу после прорезывания.
При очень больших количествах F в организме возникает отравление фторсоединениями. Выражается в повыш-й хрупкости костей и их деформацией из-за нарушения Р-Са-го обмена. Как при рахите, но употребление вит.Д и А не вызывает существенного влияния на нарушение Р-Са обмена.
Большое количество F оказывает токсическое действие на весь организм, вследствие выраженного тормозящего влияния на процессы обмена углеводов, жиров, тканевого дыхания.
Роль F
Принимают участие в процессе минерализации зубов и костей. Прочность фторапатитов объясняется:
1) усил. связи между ионами Са в кристаллической решетке
2) F связывается с белками органического матрикса
3) F способствует образ-ю более прочных кристаллов ГАП и F-апатитов
4) F способствует активизации процесса преципитации апатитов смешанной слюны и тем самым повыш. ее реминерализующую функцию
5) F влияет на бактерии полости рта, сжигаются кислотообраз.св-ва и тем самым предотврацает сдвиг рн в кислую сторону, т.к. F ингибирует эколазу и подавляет кликолиз. На этом механизме основано противокариесное действие F.
6) F принимает участие в регуляции поступления Са в твердые ткани зуба, сниж.проницаемость эмали для других субстратов и повыш кариесорезистентность.
7) F стимулирует репаративные процессы при переломах костей.
F снижает сод-е радиоактивного стронция в костях и зубая и уменьш тяжесть Str рахита. Sr конкурирует с Са за включение в кристаллическую решетку ГАП, а F подавляет эту конкуренцию.
Аскорбиновая кислота. Функция. Роль в метаболизме тканей и органов полости рта
1) действие витамина связывают с его участием в ОВ-реакциях. Он ускоряет дегидрирование восст. коферментов НАДН и др., активирует окисление глюкозы по ПФП столь характерному для пульпы зуба.
2) Витамин С влияет на синтез гликогена, который используется в зубах как основной источник энергии в процессе минерализации.
3) Вит.С актив. многие ферменты углеводного обмена: в гликолизе – гексо…за, фосфофруктокиноза. В ЦГК …гидрогеноза. В тканевом дыхании – цитохромоксидоза, а также ферменты минерализации – щелочной фосфатозы
4) Вит.С принадлежит непосредственное участие в биосинтезе белка, соед.тк., проколлагена в его превращении в коллаген. В основе этого процесса лежат 2 реакции
пролин — -аксипролин
Ф-т: пролингидроксилаза, коф-т: вит С.
Лизин – оксилизин ф-т: лизингидроксилаза, коф-т: вит.С
Витамин С выполняет другую ф-ю: активация ферментов путем редуцирования дисульфидных мостиков в белках ферментов до сульгидрильных групп. В результате активации щелочной фосфатозы, … дегидрогеназы, цитохромаксидозы.
Дефицит вит.С влияет на состояние пародонта, образование межклеточного вещества в соед.ткани уменьшается
5) авитаминоз изменяет реактивность тканей зуба. Может вызвать цингу.
Каким патологическим процессам подвержен верхний зубной слой
Чтобы зубы оставались здоровыми, а улыбка – белоснежной и лучезарной, важно поддерживать гигиену и вовремя реагировать на любые патологические изменения, происходящие в полости рта. К сожалению, большинство пациентов обращаются за стоматологической помощью уже на поздних стадиях развития болезни. Давайте посмотрим, какие возможные проблемы могут затронуть состояние эмали и привести к нежелательным последствиям.
Разрушение кариозными и некариозными процессами
Причиной разрушения твердых тканей могут выступать как кариозные, так и некариозные процессы. И если с первыми все более-менее понятно, то разрушение некариозного характера требует тщательного обследования организма на предмет серьезные системных нарушений.
Кариес разрушает эмаль зубов
Побочные сбои могут происходить как уже в сформированном организме взрослого человека, так и у ребенка на стадии прорезывания молочных или постоянных зубов, и даже у плода еще на стадии внутриутробного развития. В последнем случае спровоцировать проблему может болезнь будущей матери или прием серьезных медикаментов во время вынашивания малыша. Однако ослабление эмали может быть связано в том числе с гормональной перестройкой, например, во время беременности многие женщины жалуются на гиперестезию.
Патологическая стираемость
Предпосылками такой проблемы часто становятся патологии зубочелюстной системы, в том числе разные формы неправильного прикуса или искривленное положение зубов. Однако причины также могут иметь неврологический характер, и такое часто наблюдается в детском возрасте.
К примеру, некоторые дети громко скрипят зубами во время сна, что происходит из-за бессознательного, но очень сильного сжатия челюстей. В таких случаях ребенка обычно направляют к невропатологу, назначают курс седативных препаратов и индивидуальную каппу, которую нужно надевать на ночь, – она будет защищать зубы от истирания.
Так выглядит стираемость эмали зубов
«У меня ребенку диагностировали стираемость повышенную и бруксизм. Это когда дети по ночам громко зубами скрипят. Есть слух, что во всем глисты виноваты, но это полная чушь. Я его каждый год глистогоню как положено. Врач сказал, что это может быть нервное и выписал специальные капы. Теперь он с ними спит, хотя поначалу капризничал, не хотел надевать, говорил, что мешают. Ну а что делать, не без зубов же ходить!»
Людмила, из переписки на форуме woman.ru
Клиновидный дефект
Данная патология проявляется как V-образная форма соединения зуба с десной. Дефект возникает в результате повреждения слизистой или опускания ее края, и причин такому явлению также существует достаточно много. Это может быть неправильно подобранная по жесткости щетка, аномалия прикуса, нехватка питательных микроэлементов в организме, обильные отложения в поддесневой области как результат недостаточной гигиены полости рта.
Так выглядит клиновидный дефект
Гипо- и гиперплазия
Гипоплазия выражается в частичном отсутствии эмали на разных участках зуба или ее постепенным истончением на фоне серьезных системных нарушений в организме. Гиперплазия – обратное явление, которое характеризуется избыточным образованием эмалевой ткани и неоднородностью структуры внешней оболочки зубов.
На фото показана гипеплазия эмали зубов
Эрозивное поражение
Патология весьма распространенная, но при этом причины ее до сих пор плохо изучены. Редко когда удается обнаружить ее на ранних стадиях, и чаще всего пациенты обращаются за стоматологической помощью, когда эмаль уже вся покрыта эрозивными пятнами и плохо справляется со своими прямыми защитными функциями.
На фото показана эрозия зубной эмали
Предположительными причинами развития такого патологического процесса считаются эндокринные нарушения и прием сильнодействующих медикаментов, приводящий к деминерализации и разрушению зубной поверхности.
Повреждения эмали после формирования зубов
В этом разделе подробно описаны причины болезней и разрушения зубной эмали, которые не вызваны генетическими факторами и врожденными заболеваниями на этапе формирования зубных зачатков.
Заболевание | Описание | Профилактика и лечение |
Эрозия | Некариозное поражение эмали и дентина, которое может быть спровоцировано употреблением продуктов с повышенной кислотностью, а также заболеваниями желудочно-кишечного тракта, приемом некоторых видов лекарств и применением зубных паст или порошков с высокой абразивностью. | Терапия с применением таблеток или раствора кальция, минерализация зубной эмали. |
Чувствительная зубная эмаль | Острая реакция на холодное и горячее. Часто связано с истончением эмалевого слоя. Тонкая зубная эмаль также более уязвима для кариозных бактерий. | Прием минералов и поливитаминов для укрепления эмали. В некоторых случаях требуется ортодонтическое или ортопедическое лечение. |
Клиновидный дефект | Оголение шейки зуба и постепенное разрушение основания. Характеризуется изменением цвета, болезненной реакцией на холодное и горячее в области поражения. | Клиновидный дефект может быть вызван как заболеваниями десен, так и проблемами со щитовидной железой и желудочно-кишечным трактом. В зависимости от причины назначается лечение. Эмаль укрепляется с помощью приема препаратов, электрофореза и установки пломб в области поражения. |
Некроз | Некроз тканей зуба начинается с появления светлых пятен, которые со временем становятся бурыми или коричневыми. В подавляющем большинстве случаев некроз связан с нарушением обмена веществ. | Устранение первопричины вкупе с терапевтическими процедурами. |
Кариес зубной эмали | В первую очередь кариес поражает зубную эмаль. Если вовремя не начать лечение, болезнь неминуемо затронет более глубокие ткани зуба. | Обработка кариозной области и установка пломбы. На ранних стадиях сегодня возможно лечение кариеса без бормашины с последующими восстановительными процедурами для эмали. |
Механические травмы | Сколы, ушибы и вывихи зуба, в результате которых нарушается целостность и образуются трещины на зубной эмали. | Терапевтическое или ортопедическое лечение в зависимости от типа повреждения. |
Можно ли регенерировать эмаль
Ткань, образующая эмаль, не имеет способности к самовосстановлению и регенерации. Поэтому так важно внимательно следить за ее состоянием и вовремя реагировать на любые изменения. Тем не менее, сегодня мы имеем достаточно широкие возможности для укрепления верхнего защитного слоя на зубах в случае его истончении. Речь идет о современных методах реминерализации и фторирования.
На фото показана процедура фторирования зубов
Это может быть разовая процедура или назначенный врачом терапевтический курс. При этом зубы покрывают специальными лаками с высокой концентрация фтора и кальция. Они способствуют повышению устойчивости твердых тканей к внешним агрессивным факторам, а также снижают их чувствительность – устраняют гиперестезию. Кстати, такие лаки наносят в том числе каждый раз после профессиональной чистки от налета и отложений в кабинете стоматолога. Помните, что данную процедуру нужно проходить каждые полгода для профилактики.
А вот в случае заметного повреждения эмалевого слоя приходится исправлять дефект путем пломбирования с предварительным удалением пораженных тканей. В другом случае может быть рекомендована установка виниров или даже протезов, если разрушение сильно повредило внешнюю коронковую часть.
Универсальные эмали
Наиболее широко в быту используется эмаль ПФ-115, которая изготавливается на пенфтафталевой основе. Пентафталевые эмали подходят как для наружных, так и для внутренних работ, обладают хорошим блеском. Цветовая гамма самая разнообразная. Цена этой эмали невысока и доступна каждому. ПФ-115 предназначена для окраски металлических, деревянных и других поверхностей, которые подвергаются внешнему атмосферному воздействию. Эта эмаль подходит и для окрашивания любых предметов обихода, от оконных рам до батарей. Покраска ЛКМ такого типа не требует особых умений.
Белая эмаль предназначена для качественной окраски оконных рам, дверей, мебели, металлических изделий. Супербелые эмали обладают высокой износоустойчивостью и атмосферостойкостью. А для окраски отопительных радиаторов в белый цвет используется специальная эмаль акриловая водоразбавляемая.
Для покраски металлических деталей шасси, узлов, двигателей автомобиля методом окунания или электроосаждения применяется эмаль черная В-ФЛ 1199.
Основы личной гигиены
Застраховаться от стоматологических заболеваний, конечно, невозможно, но в наших силах снизить риск их появления до самого минимума. Для этого достаточно обеспечить правильную гигиену полости рта, то есть регулярно чистить зубы днем и вечером, пользоваться профилактическими ополаскивателями и нитями-флоссами после каждого приема пищи, стараться есть полезную еду, в том числе богатую кальцием и фосфором, а также избегать курения и чрезмерного потребления сладкого, мучного, газированных напитков и алкоголя.
Правильная гигиена полости рта поможет сохранить здоровье зубов
Также важно не забывать каждые полгода посещать стоматолога для профилактических осмотров и снятия отложений. Не менее важно вовремя лечить любые патологические изменения в полости и не затягивать визит к специалисту при появлении первых подозрительных симптомов.
Способы укрепления
Для устранения патологий, связанных с зубной эмалью, стоматологи используют разные методики, как терапевтические, так и ортопедические. При серьезных поражениях используются коронки или виниры. Но лучший вариант для каждого человека – попытаться сохранить собственные здоровые зубы. Какие варианты укрепления эмали подходят для взрослого человека:
- Регулярно принимать курсом витамины и минералы.
- Использовать профилактические и лечебные средства – гели и пасты, в составе которых кальций и фтор.
- Регулярно посещать стоматологический кабинет для профилактического осмотра и профессиональной чистки. Это позволит не только защитить эмаль, но и предотвратить развитие кариеса.
- Если эмаль повреждена и утрачена визуальная привлекательность, можно пройти процедуру отбеливания, но только после предварительной консультации с лечащим врачом.
Детям стоматологи рекомендуют фторирование, герметизацию фиссур и другие процедуры, направленные на комплексное укрепление зубов. Родителям следует обращать внимание на рацион ребенка. В нем не должно быть сладкой газировки и чрезмерного количества сладостей. Поскольку в состав эмали зубов входит большое количество микроэлементов, стоит периодически пить витамины, предварительно проконсультировавшись с педиатром и детским стоматологом.
Важные элементы для укрепления зубных тканей
Именно с правильными продуктами питания в наш организм поступают полезные вещества, витамины и микроэлементы, которые самым непосредственным образом участвуют в поддержании здоровья зубов и десен. Эксперты в области стоматологии настоятельно рекомендуют ввести в свой повседневный рацион продукты, богатые следующими компонентами:
- кальций, фтор и витамин D – именно эти вещества составляют основу для формирования костных тканей, в том числе эмали,
- витамины группы B – поддерживают здоровье десен и укрепляют зубодесневой связочный аппарат,
- витамин С – важный компонент для здоровья организма в целом. Его достаточное поступление в организм вместе с пищей снижает риск кровоточивости десен и расшатывания зубов, защищает от образования язв и инфицирования тканей,
- витамин Е – способствует регенерации поврежденных тканей, снижает чувствительность слизистой и ее восприимчивость к механическим раздражителям,
- витамин А – дефицит этого компонента нарушает процессы слюноотделения и структуру эмалевого слоя, из-за чего он становится шероховатым и неоднородным.
Витамины участвуют в поддержании здоровья зубов и десен
Все эти вещества крайне важны для здоровья не только полости рта, но и всего организма. Правильное питание, здоровый образ жизни, а также внимательное заботливое отношение к своему телу – все это самым положительным образом отражается на внешнем виде и состоянии наших зубов.
1Ипполитов, Ю. А. Функциональная морфология эмали человеческого, 2010.
Дентиноэмалевое соединение
Дентиноэмалевое соединение мы рассмотрим по рисункам снизу от текста. На рис. 1 изображен сегмент зуба, включающий дентин (Д) и внутреннюю область эмали (Э), который затем показан в несколько увеличенном виде на рис. 2.
На рис. 2 выделен маленький участок периферической зоны дентина, чтобы показать его ультраструктурные особенности строения непосредственно под дентиноэмалевым соединением (ДЭС). На обнаженной поверхности дентина можно видеть разветвленные терминальные сегменты волокон Томса (ВТ), появляющиеся из дентинных трубочек (ДТ), окруженных оболочками Неймана (ОН). Этот вид гиперминерализованного перитубулярного дентина отличается от интертубулярного дентина (ИД), который составляет основную часть дентина. В маленькой зоне специально декальцинированного дентина, т. е. без кристаллов гидроксилапатита, показаны коллагеновые микрофибриллы (КМ), впаянные в твердое основное вещество дентина.
В дентине, ближе к дентиноэмалевому соединению, интерглобулярные пространства (ИП) ограничены сферическими структурами кальцифицированного дентина. Они могут содержать некоторое количество коллагеновых микрофибрилл. Вокруг волокон Томса, которые обычно пересекают интерглобулярное пространство, нет оболочек Неймана. Некоторые волокна Томса могут проникать на короткие расстояния в эмаль (Э). Поверхность дентина в области дентиноэмалевого соединения имеет обычно рельеф в виде дентинных выступов (ДВ), разделенных гребнями (Г), располагающимися между группами эмалевых призм (ЭП). Каждая эмалевая призма в группе входит в дентин, поэтому они образуют маленькие углубления (У), видимые на вогнутой поверхности каждого дентинного выступа. В нижнем левом углу этого рисунка показана изолированная эмалевая призма, входящая в такое углубление.
Зоны контакта эмалевых призм с поверхностью дентина видны на рис. 3.