Руководство по «выращиванию» зубов, или биоинжениринг в стоматологии


Конкурс «био/мол/текст»-2017

Эта работа опубликована в номинации «Свободная тема» конкурса «био/мол/текст»-2017.

Генеральный спонсор конкурса — : крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Спонсором приза зрительских симпатий и партнером номинации «Биомедицина сегодня и завтра» выступила .

«Книжный» спонсор конкурса — «Альпина нон-фикшн»

…Говорят, зло не имеет лица. Действительно, на его лице не отражалось никаких чувств. Ни проблеска сочувствия не было на нём, а ведь боль просто невыносима. Разве он не видит ужас в моих глазах и панику на моем лице? Он спокойно, можно сказать, профессионально выполнял свою грязную работу, а в конце учтиво сказал: “Прополощите рот, пожалуйста…”

Так описывает посещение стоматолога Дэн Эндрюс в своем рассказе «Несчастная». И действительно, с детства мы с невероятным «трепетом» относимся к таким специалистам, как стоматологи. Что только ни предпринимают родители, чтобы заставить своих детей хотя бы зайти в кабинет к врачу, стараясь не думать о том, что ждет их дальше. Да и порой у взрослого человека душа уходит в пятки при виде многочисленных инструментов. Иногда для этого достаточно только вида стоматологической клиники.

В итоге состояние полости рта и твердых тканей зубов во всем мире не вселяет надежду на будущее без кариеса. Несмотря на успехи, достигнутые в стоматологическом лечении, потеря зубов остается одной из самых существенных проблем. Так, по данным ВОЗ, основными причинами потери зубов являются кариес и пародонтит. Полная потеря зубов в особенности широко распространена среди пожилых людей. В глобальных масштабах примерно у 30% людей в возрасте 65–74 лет отсутствуют зубы по причине воспалительных заболеваний пародонта и патологии твердых тканей зубов [1].

Поэтому неудивительно, что состояние полости рта у населения не только в России, но и в мире представляет собой серьезную проблему, предлагая возможности как для изучения, так и, что более важно, — для поиска новых способов лечения. Одним из них стала тканевая инженерия — междисциплинарная отрасль, целью которой является создание биологических заместителей, восстанавливающих и поддерживающих функции ткани или органа. Достаточно высокая эффективность методов тканевой инженерии и их потенциал заставили обратить на себя внимание многих деятелей науки. Это же способствует их неувядающей популярности в различных сферах медицины и по сей день.

Альтернативные подходы к выращиванию зубов

Надежда человечества на возможность улучшить свое здоровье и восстановить утраченные органы естественным путем так велика, что некоторые начинают верить в ненаучные методы лечения. Да-да, сегодня существуют альтернативные методы, которые, по утверждению их разработчиков, позволяют вырастить новые зубы. Но не из стволовых клеток, а чуть ли не в домашних условиях и силой мысли. Предлагаем рассмотреть их для общего развития.

Методика Норбекова

Норбеков – доктор российской и узбекской нетрадиционной медицины, выпустивший много книг, разошедшихся многомилионными тиражами, и организовавший «Институт самовосстановления человека».


Методика Норбекова основана на выращивании единимы с помощью силы воли

Согласно его теории, любой может достичь положительного результата с помощью силы воли и специального комплекса дыхательных упражнений, которые нужно выполнять в утренние часы. Все просто: после специальной гимнастики необходимо мысленно сосредоточиться на органах, которые нужно восстановить, продумать процесс их роста и оздоровления в мельчайших деталях, как бы «запрограммировать» свое сознание на положительный результат.

Автор методики заявляет: если в процессе (примерно через 2 недели после начала духовной практики) почувствуется покалывание в десне, значит, вы находитесь на верном пути.

Способ самовнушения Шичко

Биолог Шичко предлагает своим последователям добиваться положительного результата с помощью подсознания. Больше всего подсознание человека, как уверяет биолог, восприимчиво в вечерние часы, перед засыпанием. Именно вечером, согласно методике, нужно задавать организму правильное направление, представляя во всех деталях процесс формирования и роста зубов.

Метод Столбова

Автор этого способа утверждает, что ему самому удалось таким образом вырастить 17 новых зубов, а уже верить ему или нет – ваше право. Чтобы были велики шансы на успех, необходимо придерживаться следующих правил:

  • поверьте в чудеса и раскройте свой разум для них,
  • откажитесь от вредных привычек, так как они забирают положительную жизненную энергию, которую можно использовать по другому назначению,
  • если у вас есть лишний вес, то обязательно похудейте,
  • учитесь слушать сигналы своего тела,
  • визуализируйте мечту, представляйте себе исключительно положительный результат.

Метод Веретенникова

Автор метода предлагает всем страждущим духовную практику, которая позволяет выращивать элементы ряда в строго определенной последовательности. Точно в таком же порядке, как это происходит у детей.

Для положительного результата вам потребуется около 3 месяцев и всего полчаса времени ежедневно. Сами зубы при этом надо представлять в виде семян, которые будут постепенно прорастать через челюстную кость и десну. Силой мысли нужно научиться вызывать в области десен прилив крови и тепла. На завершающем этапе аутотренинга необходимо активировать энергию «третьего» глаза и внушить себе, что совсем скоро у вас будет белоснежная и красивая улыбка.


При данном методе новые зубы надо представлять в виде семян, которые будут постепенно прорастать

При этом метод позволяет выращивать не только новые элементы на месте утраченных, но и менять больные единицы на здоровые. Естественно, это со слов автора методики.

В мире существуют разные техники медитации или специальных практик для йоги, направленные на выращивание зубов у человека. Но помните, что стоматологи, да и все научное сообщество, отрицательно относятся к подобным методикам, ведь они бездоказательны и совершенно неэффективны.

Notice

: Undefined variable: post_id in
/home/c/ch75405/public_html/wp-content/themes/UltraSmile/single-item.php
on line
45Notice
: Undefined variable: full in
/home/c/ch75405/public_html/wp-content/themes/UltraSmile/single-item.php
on line
46

Оцените статью:

(2 оценок, среднее: 5,00 из 5)

профилактика

  1. Пашкевич В.Д. Перспектива развития технологии выращивания зубов в стоматологии // Бюллетень медицинских интернет-конференций, – 2015.
  2. Зотова А.А., Вдовенко К.Д. Актуальность применения 3D-принтеров в современной стоматологии // Бюллетень медицинских интернет-конференций, – 2015.

Эксперт «Истина стара как мир. Чтобы не мучиться вопросом восстановления зубов, нужно поддерживать здоровье полости рта и всего организма в целом. С самого раннего возраста человек должен проходить профилактические осмотры у разных специалистов, вовремя выявлять патологии и комплексно лечить их». Хирург-имплантолог Васильев Александр Александрович

Консультирующий специалист

Тарабановская Марина Игоревна

Специализация: Стоматолог терапевт, пародонтолог Стаж: 10 лет

Зуб за зуб

Первые попытки стоматологического лечения люди предприняли очень давно. При раскопках в Египте археологи обнаружили вырезанный из раковины моллюска искусственный зуб в челюсти человека, жившего пять с половиной тысяч лет тому назад (рис. 1) [2].


Рисунок 1. Вид вестибулярной поверхности зуба, вырезанного из раковины. Интервал отметок по краям — 1 мм.

[2]

Помимо «зуба из морепродуктов» нашли реимплантированные зубы в челюсти молодой женщины, причем все они были не на своих «местах»: вместо верхнего центрального резца альвеола содержала клык. Эти зубы имели все признаки интеграции, то есть сращения с живой тканью [3]. Таким образом, оказывается, уже в это время были сделаны первые шаги в стоматологии, но, что более удивительно, также и в области тканевой инженерии.

Но, спросите вы, как могут быть связаны стоматология и тканевая инженерия, не считая того, что несколько тысячелетий назад один египтянин ценил свою улыбку так, что заменил потерянный зуб чужим? Очень даже могут, ведь на данный момент не существует панацеи для лечения пациента, которому поставлен диагноз частичной или полной адентии, то есть отсутствия зубов. К тому же потеря даже одного зуба приводит к изменению не только эстетических параметров, но, что более важно, к нарушению первичной обработки пищи и ухудшению речи. Не стоит также забывать, что при потере зубов — будь то в результате травмы или кариозного процесса и его осложнений — изменяется состояние зубочелюстной системы в целом, что ухудшает прогноз и осложняет дальнейшее лечение.

Для того чтобы компенсировать функции утраченного зуба, сейчас используют ортопедические конструкции и имплантаты (рис.2). Все же это «искусственные» заменители: у них отсутствуют сосуды, нервные окончания, рецепторы. Также одним из наиболее важных аспектов является отсутствие периодонтальной связки у имплантата, до недавнего времени считавшегося золотым стандартом лечения при отсутствии зубов.


Рисунок 2. Строение зуба и имплантата. Natural tooth — зуб. Artificial crown — искусственная коронка. Gingiva — десна. Implant — имплантат. Osteointegration — остеоинтеграция. Periodontal ligament — периодонтальная связка.

сайт www.neoclinique.ro

Периодонт — это высокоспециализированная фиброзная соединительная ткань, состоящая из клеток и внеклеточного матрикса. Она располагается между цементом, покрывающим корень зуба, и костной тканью, формирующей стенку лунки. У человека периодонтальная связка способствует укреплению зуба в альвеоле, обеспечивает механическую устойчивость к воздействию жевательных сил на зуб, распределяя приложенное давление: сила всех жевательных мышц составляет ни много ни мало 390 кг [4].

Что же не так с имплантатом?

Во-первых, как уже было описано выше, — это отсутствие периодонтальной связки. Имплантат удерживается за счет остеоинтеграции, то есть посредством анатомической связи с костной тканью. В отличие от зуба, у которого имеется небольшая физиологическая подвижность, имплантат неподвижен. Если же вокруг имплантата появляется подобие соединительной ткани, то это означает только одно — периимплантит, то есть воспалительный процесс в костной ткани, окружающей имплантат. В большинстве случаев развития данного сценария имплантат подлежит удалению [5].

Во-вторых, имплантат не может быть соединен в общую конструкцию с оставшимися зубами пациента из-за отсутствия связочного аппарата и неспособности адекватного распределения давления. Здесь работает принцип: кто сильнее, тот в зубном ряду. Либо имплантат не позволит зубу двигаться, что приведет к атрофии тканей пародонта и потере зуба, либо будет потерян имплантат.

В-третьих, у каждого пациента свои анатомические особенности, и объем костной ткани для постановки имплантата не всегда бывает достаточным.

И, в-четвертых, важно помнить, что для долговечности имплантата необходимо поддерживать идеальную гигиену полости рта, что, мягко говоря, получается далеко не у всех. Здесь мы возвращаемся к ранее упомянутой проблеме периимплантита [5]. Получается своего рода замкнутый круг.

Все эти недостатки приводят к поиску альтернативных способов лечения.

Одним из них может стать тканевая инженерия. В этой статье я постараюсь суммировать недавний прогресс, перспективы и основные направления развития биоинженерии зуба, то есть кратко рассказать о том, что нужно для создания зуба.

Свои или искусственные

Ортопедические конструкции и имплантаты до некоторой степени компенсируют функции утраченного зуба, однако у этих искусственных заменителей отсутствуют сосуды, нервные окончания и рецепторы. Кроме того, они не образуют периодонтальную связку — слой соединительной ткани между корнем зуба и костью, формирующей стенку лунки. Периодонт способствует закреплению зуба в альвеоле и обеспечивает его механическую устойчивость: сила жевательных мышц человека составляет целых 390 кг, и связка распределяет это давление между зубами.

В отличие от зуба, имплантат неподвижен, а развитие вокруг него соединительной ткани часто заканчивается воспалением (периимплантитом) и требует удаления искусственного зуба. Кроме того, имплантат не может быть соединен в одну конструкцию с зубами пациента как раз из-за неспособности адекватного распределения давления ввиду отсутствия периодонта. Наконец, имплантированный заменитель требует куда более внимательного отношения к гигиене полости рта, что снова возвращает нас к основному источнику наших проблем, «человеческому фактору». Очевидно, идеальным решением была бы технология выращивания настоящих живых зубов, а не пересадка искусственных. Так давайте перейдем к делу.

Самый ранний признак развития зубов — образование дентальной пластинки, подковообразного утолщения эпителия, которое тянется вдоль верхней и нижней челюстей эмбриона. Пройдя через несколько этапов, она образует корни отдельных зубов. Координацию этого процесса обеспечивают как минимум четыре эпителиальных сигнальных центра, клетки которых выделяют вещества, регулирующие формирование зуба.

Все перечисленное выше пригодится нам и для создания новых зубов методами тканевой инженерии. «Рецептура» выращивания любой биологической ткани требует трех базовых компонентов: стволовых клеток, внеклеточного матрикса (скаффолда, который предоставляет опору для развивающихся клеточных структур) и, наконец, факторов роста, объединенных в необходимые для развития зуба сигнальные пути. Пойдем по порядку и начнем с главных героев — стволовых клеток, обладающих одонтогенной компетентностью и способных развиться в ткани зубов.

Откуда берутся зубы, или одонтогенез in vivo

Естественно, перед тем как разбираться в биоинжениринге, нужно понимать, как зуб развивается изначально в организме человека.

Формирование зубов — достаточно сложный процесс, который сопровождается тканевым взаимодействием и контролируется огромным количеством сигнальных молекул (рис.3) [6].


Рисунок 3. Стадии развития зуба. В процессе развития зуб проходит через следующие стадии: плакоды, почки, колпачка, колокола, стадии развития корня и прорезывания. Формирование зуба начинается в области дентальной пластинки, которая состоит из мезенхимальных клеток и инвагинированного эпителия. На первом этапе из дентальной пластинки образуется зачаток зуба (стадия плакоды). Во время стадии колпачка формируется первичный эмалевый узел, а на стадии колокола — вторичные эмалевые узлы, которые формируют бугорки будущих коронок зубов. Здесь же эпителиальные и мезенхимальные клетки зародыша зуба дифференцируются в амелобласты, одонтобласты и клетки дентального фолликула. Амелобласты и одонтобласты продуцируют эмаль и дентин соответственно. Клетки дентального фолликула дифференцируются в клетки тканей периодонта: в периодонтальную связку, цемент и альвеолярную кость.

[7]

Зуб развивается из тканей, образованных зародышевым листком эктодермой. Делясь и дифференцируясь, клетки эктодермы формируют структуры, необходимые для развития зуба: дентальный эпителий и нервный гребень, который позже преобразуется в мезенхиму. Формирование зуба инициируется и регулируется эпителиально-мезенхимальными взаимодействиями. Самый ранний признак развития зуба — образование дентальной пластинки, подковообразного утолщения эпителия вдоль верхней и нижней челюстей. Дальнейшие этапы включают стадии плакоды, почки, колпачка, колокола и развитие корня [6], [7].

В развитии зуба основную роль играет взаимодействие между клетками эпителия и мезенхимы. Почему же в процессе развития зародыша формируется именно зуб, а не другой орган, например, кишечник? Все дело в том, что клетки, участвующие в развитии зуба, обладают одонтогенной компетентностью. Генетическая подоплека одонтогенности, то есть способности стволовых клеток дифференцироваться непосредственно в дентальные клетки, до конца не выяснена, хотя выделено более 200 генов, «причастных» к развитию зуба. Во многих работах, направленных на изучение данного феномена, также уделяется много внимания неким эпителиальным сигнальным центрам. Всего на данный момент мы знаем о 4 таких центрах: дентальная пластинка, плакода, первичные и вторичные эмалевые узлы, основная роль которых заключается в экспрессии сигнальных молекул, регулирующих формирование зуба [8], [9].

Регенерация зубов практика

Данное видео является записью вебинара по теме Как вырастить себе новые зубы. Во второй части вебинара мы предлагаем медитативную практику, которая поможет вам активировать процесс восстановления зубов.

Если вы хотите продолжить заниматься восстановлением зубов с помощью наших практик, присоединяйтесь к нашей рассылке вконтакте, где вы будете получать приглашения на регулярные бесплатные онлайн занятия по регенерации зубов: https://vk.cc/c7qzzW

Или пишите мне лично вконтакте или в ватсапе. Буду раз познакомиться и ответить на ваши вопросы!

Негонконгская «Триада»

Теперь, когда мы так много знаем о происхождении и развитии зуба, можно перейти непосредственно к интересующей нас теме — тканевой инженерии.

Тканевая инженерия представляет собой совокупность методов и процедур, направленных на регенерацию биологических тканей. Она включает в себя триаду основных элементов (рис.4): стволовые клетки, внеклеточный матрикс или скаффолд (от англ. scaffold — помост), факторы роста и сигнальные пути (signaling) [10].


Рисунок 4. Триада тканевой инженерии. Основу триады тканевой инженерии составляют стволовые клетки, факторы роста и внеклеточный матрикс.

[10]

Цель тканевой инженерии — заместить утраченные клетки, ткани и органы, либо способствовать их регенерации, либо просто восстановить нарушенную функцию.

Сегодня мы много слышим и читаем о стволовых клетках. Это та отрасль науки, где ведут горячие споры. Информация, которая выходит к потребителям, как правило, не всегда объективна. Что же на самом деле представляют собой стволовые клетки, и как и какие из них можно использовать в тканевой инженерии зуба?

Давайте знакомиться: стволовые клетки — это недифференцированные эмбриональные или взрослые (постнатальные) клетки, способные проходить через огромное количество клеточных делений, находясь в недифференцированном состоянии, а также образовывать промежуточные клеточные типы — предшественники, которые могут дифференцироваться в различные клетки и создавать полноценные ткани и органы (рис.5) [10], [11].


Рисунок 5. Классификация стволовых клеток по способности к дифференцировке. Стволовые клетки по масштабу дифференцировки делят на тотипотентные, плюрипотентные, мультипотентные и унипотентные. Тотипотентные клетки способны дифференцироваться в любой тип клеток взрослого организма. Плюрипотентные клетки могут продуцировать специализированные клетки трех зародышевых листков (эктодермы, эндодермы и мезодермы), но не целый организм. Мультипотентные клетки продуцируют ограниченный набор типов клеток. Унипотентные клетки способны к дифференцировке только в один вид клеток [13].

[11]

Первую клеточную линию эмбриональных стволовых клеток выделили в далеком 1998 году [12]. На самом деле, не так уж и давно, а с точки зрения хода истории можно сказать совсем недавно, но прогресс колоссален [10].

Эмбриональные стволовые клетки выделяют из бластоцисты в течение развития эмбриона. Они дают рост трем зародышевым слоям: экто-, эндо- и мезодерме. Эти клетки тотипотентны, то есть они могут развиться в каждый из более 200 типов клеток взрослого организма [10].

Сейчас известно 3 источника эмбриональных стволовых клеток млекопитающих: клетки, выделенные из внутренней клеточной массы бластоцисты; клетки тератом и первичные половые клетки зародыша [10].

Как было раньше упомянуто, стволовые клетки бывают не только эмбриональные, но и постнатальные. Что касается «взрослых» стволовых клеток, то они существуют в организме в различных тканях, включая костный мозг, кровеносные сосуды, печень, кожу, жировую ткань и дентальные ткани. Они локализованы в специальных нишах, где идет регуляция их пролиферации, миграции и сроков жизни. Постнатальные стволовые клетки мультипотентны, то есть дают рост только одному типу клеток.

Дентальные стволовые клетки представляют собой популяцию постнатальных мезенхимальных стволовых клеток (МСК), обладающих способностью к самообновлению и дифференцировке [4], [14]. В зависимости от локализации депо МСК (рис. 6) [15], они подразделяются на:

  • стволовые клетки пульпы;
  • стволовые клетки апикального сосочка;
  • стволовые клетки удаленных молочных зубов;
  • клетки-предшественники зубного фолликула;
  • стволовые клетки периодонтальной связки;
  • МСК, полученные из альвеолярного отростка;
  • МСК десны;
  • прогениторные клетки (МСК, направленные на дифференцировку только в определенный тип клеток) зубного зачатка.


Рисунок 6. Стволовые клетки зуба. Схематическое изображение источников дентальных стволовых клеток. Расшифровку аббревиатур смотрите во врезке ниже.

[15]

Аббревиатуры

ВОЗ Всемирная организация здравоохранения МСК мезенхимальные стволовые клетки ЭКМ экстраклеточный матрикс ABMSCs мезенхимальные стволовые клетки, полученные из альвеолярного отростка (alveolar bone-derived mesenchymal stem cells) BMP костный морфогенетический белок (bone morphogenetic protein) DFPCs клетки-предшественники зубного фолликула (dental follicle progenitor cells) DPSCs стволовые клетки пульпы (dental pulp stem cells) FGF фактор роста фибробластов (fibroblast growth factor) GMSCs МСК десны (gingival mesenchymal stem cells) iPSCs индуцированные плюрипотентные стволовые клетки (induced pluripotent stem cells) PDGF тромбоцитарный фактор роста (platelet derived growth factor) PDLSCs стволовые клетки периодонтальной связки (periodontal ligament stem cells) SCAP стволовые клетки апикального сосочка (stem cells from the apical part of the human dental papilla) SHEDs стволовые клетки удаленных молочных зубов (stem cells from human exfoliated deciduous teeth) TGPCs прогениторные клетки зубного зачатка (tooth germ progenitor cells)
Остановимся на некоторых из них.

Стволовые клетки пульпы можно достаточно легко выделить из пульпы удаленных зубов. Они представляют собой очень привлекательный и перспективный источник аутологичных стволовых клеток и могут применяться как для регенерации дентина, пульпы и цемента, так и для восстановления костной ткани [15]. Помимо этого они проявляют сильную нейрорегенеративную активность, что представляет особую ценность при лечении повреждений спинного мозга: МСК пульпы кроме подавления раннего воспалительного ответа ингибируют апоптоз нейронов, астроцитов и олигодендроцитов после травмы, что приводит к сохранению нервного волокна и миелиновой оболочки. Также установили, что они способствуют регенерации перерезанных аксонов. Таким образом, ученые предполагают, что МСК пульпы смогут обеспечить значительные терапевтические преимущества в лечении травм спинного мозга [16].

Стволовые клетки удаленных молочных зубов — это постнатальная популяция стволовых клеток с высокой пролиферативной способностью, высокой жизнеспособностью и потенциалом многолинейной дифференциации (например, в остеобласты, нейронные клетки и одонтобласты) [15].

Мезенхимальные стволовые клетки десны идеально подходят для восстановления поврежденных тканей пародонта, мышц и даже сухожилий. Но пока не совсем ясно, способны ли они формировать клетки дентина и пульпы [15].

Прогениторные клетки зубного зачатка — относительно новая популяция стволовых клеток, которую обнаружили в мезенхиме зачатка третьего моляра на стадии колокола. Они показывают такую же многоуровневую дифференциацию, как и другие МСК зуба, включая способность к дифференцировке в адипоциты, остеобласты, одонтобласты, хондроциты и нейроны, а также могут дифференцироваться в клетки с морфологическими, фенотипическими и функциональными характеристиками гепатоцитов. Отсюда предполагают, что данный тип стволовых клеток в будущем смогут использовать для лечения заболеваний печени [15].

Таким образом, каждый тип дентальных стволовых клеток имеет свои особенности и сферы применения не только в стоматологии, но и в других областях медицины.

Помимо описанных выше МСК, в тканевой инженерии используют и индуцированные плюрипотентные стволовые клетки (ИПСК), полученные из соматических клеток. Впервые о них заговорили в 2006 году, когда японские ученые Кадзутоси Такахаси и Синъя Яманака показали, что соматические клетки можно перепрограммировать в ИПСК с помощью усиления экспрессии определенных факторов транскрипции (Oct3/4, Sox2 и Klf4) [17], [18]. Сами по себе эти клетки иммунологически нейтральны и, что не менее важно, не вызывают таких этических препирательств, как стволовые эмбриональные клетки. Однако для их перепрограммирования использовали вирусных агентов, что могло повлечь за собой формирование новообразований [19]. Были попытки использования вместо вирусов химических молекул [20], но, к сожалению, процент успешного репрограммирования оказался невелик. Сейчас развивают новые способы получения ИПСК, поскольку их применение выглядит достаточно привлекательным и весьма многообещающим.

Комментарии

А можете более подробно рассказать про методику Норбекова? Что за гимнастика и комплекс дыхательных упражнений? Слышала про этого доктора что-то, но не могу вспомнить. Очень интересно!

Наталья (02.04.2021 в 09:59) Ответить на комментарий

А что плохого, что человек будет визуализировать себе новые зубы? вреда то от этого не будет!

Карина (12.04.2021 в 15:00) Ответить на комментарий

    Если человек научится мыслить позитивно, то вреда, конечно, от этого не будет. Но в попытках силой мысли вырастить зубы можно потерять много драгоценного времени и остатки натуральных зубов. Ведь некоторые люди, надеясь на такие духовные практики, откладывают лечение на потом, чем наносят колоссальный вред здоровью. Даже длительное отсутствие одного зуба приводит к нарушению функциональности челюстно-лицевого аппарата, нарушает полноценный процесс пережевывания и усвоения пищи. Промедление в вопросе восстановления утраченных зубов также создает сложности для имплантации и протезирования. А длительное покалывание и зуд в деснах вообще должно насторожить, так как это может свидетельствовать о гингивите и пародонтите.

    Редакция портала UltraSmile.ru (14.04.2021 в 10:22) Ответить на комментарий

Хотелось бы, чтобы выращивание зубов было стало действительно реальностью в будущем. Есть ли какие-нибудь исследования русских учёных на эту тему или пока что только зарубежные клиники этим занимаются?

Анжела (11.05.2021 в 09:12) Ответить на комментарий

Хотелось бы по больше узнать информации о методе Столбова. Это правда, что ему самому удалось вырастить 17 новых зубов? Есть ли подтверждающие доказательства о его методе? Или это всего лишь плод его фантазии?

Анастасия (11.05.2021 в 14:52) Ответить на комментарий

А подскажите эта методика психосаматический прием? или есть какие то еще методы воздествия? или может я что-то просто неправильно поняла? Помогите пожалуйста разобраться в этом)

Елена (11.05.2021 в 20:24) Ответить на комментарий

Около 10 лет назад читал в одной научной статье, что начали с помощью 3D принтеров выращивать искусственные зубы, которые не отторгаются организмом. Насколько сейчас распространена эта технология?

Игорь (24.09.2021 в 13:12) Ответить на комментарий

Напишите свой комментарий Отменить ответ

Что нам стоит зуб построить?

Для использования стволовых клеток в тканевой инженерии необходимо наличие скаффолда и ростовых факторов (рис. 7). Идеальный скаффолд должен поддерживать прикрепление, миграцию, пролиферацию и пространственную организацию клеток.


Рисунок 7. Что нам стоит зуб построить?

сайт dentistry.tamhsc.edu

В основном, скаффолд как подходящий матрикс для реконструкции тканей должен соответствовать следующим требованиям [21]:

  1. Простота использования.
  2. Наличие пор определенной формы и размера для диффузии клеток, ростовых факторов, питательных веществ и удаления продуктов жизнедеятельности.
  3. Способность к биодеградации, которая происходит в определенное время без высвобождения токсинов.
  4. Биосовместимость с тканями организма.
  5. Низкая иммуногенность.
  6. Способность к замещению регенерирующей тканью и васкуляризации.
  7. Хорошие физические и механические свойства.

Материалы, используемые для формирования скаффолдов, разделяют на натуральные и синтетические (рис. 8) [22]. Биоактивное стекло, полимолочная кислота, различные композиты (многокомпонентные материалы, в основе которых — матрица на основе металла, полимера или керамики) — все это синтетические материалы. Несмотря на то, что эти материалы позволяют изготовлять скаффолды необходимой формы, их применение весьма ограничено ввиду неудовлетворительной биосовместимости и токсичности. Из биоматериалов (натуральных материалов), используемых для создания скаффолдов, можно выделить коллаген, хитозан, гиалуроновую кислоту. Они состоят из макромолекул, которые также входят в состав экстраклеточного матрикса, поэтому биосовместимы и хорошо биодеградируемы. Однако они менее прочные и способны вызывать реакции отторжения [21].


Рисунок 8. Трехмерный скаффолд зубов мыши и человека. а — Нижний центральный резец мыши. б — Нижний первый моляр человека. Использованы 3D-реконструкция и биопечать. Материал — гидроксиапатит и поликапролактон. Визуализируются микроканалы (d = 200 нм), в которые вводят МСК и факторы роста (в и г).

[22]

Самым подходящим и отвечающим на большинство требований скаффолдом является либо скаффолд, полученный из экстраклеточного матрикса (ЭКМ-скаффолд), либо его аналог. За счет своей идентичности с внеклеточным матриксом такие скаффолды способны обеспечить наилучшую взаимосвязь с клетками и ростовыми факторами. Дентальные МСК, такие как стволовые клетки пульпы и периодонта, при культивировании в ЭКМ-скаффолдах проходили дифференцировку в одонтогенном направлении. После имплантации же данного скаффолда формировалась пульпа [10], [23].

Помимо скаффолда и стволовых клеток, необходимо связывающее их звено, которое бы регулировало рост ткани. Таковым могут быть факторы роста, определенные гены и интерферирующие РНК [7].

Факторы роста — пептидные молекулы, передающие сигналы для управления клеточным поведением и взаимодействующие со специфическими рецепторами на поверхности клеток [24]. Они обеспечивают взаимосвязь и взаимодействие между клетками и экстраклеточным матриксом. Вслед за повреждением клетки начинается секреция ростовых факторов, запускающих в дальнейшем процессы регенерации и ангиогенеза. Примером «работы» факторов роста в зубе можно назвать образование вторичного и третичного дентина, которое происходит при близком расположении кариозной полости к пульпе зуба либо при повышенной стираемости зубов. Среди ключевых факторов роста во время развития зуба можно выделить костный морфогенетический белок (BMP), тромбоцитарный фактор роста (PDGF) и фактор роста фибробластов (FGF). Именно их в первую очередь используют в тканевой инженерии зуба [25–27]. Для доставки факторов роста могут использовать как клетки и наночастицы, так и сам скаффолд.

Рецепт готов

Вот и всё, если кратко, что необходимо для создания зубов. Таким образом, рецепт по созданию зуба выглядит примерно так:

  • Стволовые клетки — ассорти
  • Скаффолд — натуральный продукт
  • Факторы роста — по вкусу

Технологии регенеративной медицины прогрессируют невероятно быстро. И уже сейчас разработаны, наверное, самые основные положения для тканевой инженерии зуба. Все они происходят из наших знаний о клеточных и молекулярных основах развития зуба. Мы понимаем, что наилучшего результата в биоинжениринге зуба можно достичь только в присутствии двух типов клеток, а не одного: это и клетки эпителия, и мезенхимальные клетки (куда же без них?) [28]. Однако на одних клетках зуб не построишь. Таким образом, здесь нельзя исключать роль факторов роста и внеклеточного матрикса. К счастью, наука не стоит на месте, и новые положения активно разрабатывают. Возможно, в ближайшее время копилка знаний под названием «тканевая инженерия зуба» пополнится очередной не менее ценной «монетой».

Но, несмотря на весь многообещающий потенциал тканевой инженерии в стоматологии, предстоит решить еще задачи, связанные с проведением клинических испытаний, с иннервацией и кровоснабжением биоинженерного зуба, его связочным аппаратом, сроками его прорезывания, а также с выбором пула стволовых клеток и технологии работы с ними, и еще ряд других не менее насущных задач [10], [29].

Что касается самого основного, а именно стволовых клеток: в проведенных экспериментах (стоит отметить, что практически все они проведены на мышах), в основном, использовали эмбриональные стволовые клетки. Но в клинике их применение резко лимитировано, в том числе законодательно. Поэтому остаются только постнатальные стволовые клетки (не считая ИПСК, где тоже не все спокойно), и здесь перед нами возникает следующая загвоздка: в отличие от мышей, у человека отсутствует ниша дентальных стволовых клеток, именно поэтому наши зубы не имеют способности к постоянному росту. Те МСК, которые пригодны для использования, нельзя получить без повреждения зуба или уж тем более в том случае, если зуб ранее лечили эндодонтически, то есть с удалением пульпы. Те же, к которым доступ открыт, не обладают одонтогенной компетентностью, например, МСК десны. Это только одна из дилемм, которые еще предстоит решить (рис.9).


Рисунок 9. Борьба за здоровые зубы человечества.

сайт accuratedentistry.net

Методики выращивания новых зубов

Существует несколько способов выращивания новых зубов. Это авторские методики таких авторов, как Петров, Шичко, Норбеков.

Все эти способы отличаются друг от друга. Но, у всех техник регенерации есть общие моменты. В них используется мысленная телепортация во времени. Исследователи предлагают человеку перенестись в то время, когда у него уже выпали все молочные зубы, а коренные еще не повреждены, они крепкие и здоровые.

Для лучшего эффекта переноса во времени авторы предлагают использовать свои фотографии, сделанные в молодости.

Так же все методики предполагают работу с энергоинформационным полем. Объект, который нужно восстановить, необходимо очень точно визуализировать и мысленно перенести на нужное место.

Все методики предполагают ежедневное или даже ежечасное мысленное внимание к нужному месту на челюсти.

Помимо психологических упражнений, авторы предлагают также физическую стимуляцию. Это массаж зубной щеткой, тренировка челюстей и т. д.

Результативность всех методик, по утверждению авторов, зависит от особенностей психики, уровня убежденности в реальности результата, силы намерения, умения разговаривать со своим телом.

Классическая медицина считает подобные методики шарлатанством. В то же время, найти объяснения чудесным явлениям, когда у людей выросли новые зубы, не может.

Вперед в будущее!

Конечно же, не вызывает сомнения тот факт, что в скором времени биоинжениринг зубов станет неотъемлемой частью стандартных протоколов лечения поражений зубов. Возможно, что методики регенеративной стоматологии позволят нам создать полноценный зубодесневой комплекс. Важно помнить, что методы, разработанные в соответствии с требованиями и задачами биоинженерии зуба, смогут подстегнуть развитие новых подходов в регенерации других тканей и органов и таким образом поспособствовать прогрессу не только в стоматологии, но и в области регенеративной медицины в целом. Ну что ж, вперед в будущее!

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]